麻将胡了

News

新闻中心

近10年欧冠门将零封率:拉亚54%第1,布冯47%第2,奥纳纳上榜(欧冠近十年门将零封率排行:拉亚54%登顶,布冯47%居次,奥纳纳在列)

日期:2026-01-14

Considering dataset analysis

plott

I want to see if I can compute using an open dataset, but I need network access and approval to search the web. Instead of jumping straight to running a network call, it might be better to get permission first. I’ll keep things concise, providing context about clean sheet rates, cautioning about sample size, and different era/team variations. I can also summarize key players like Raya, Buffon, and Onana, and offer options like plotting charts or providing SQL/Python snippets for calculations. Let's lay out those next steps!Preparing response options

First, I’ll acknowledge the headline and ask what the user is interested in: source verification, a full list, visualization, or code to compute clean sheet rates. I want to include a quick context and any caveats.

If they choose calculation, I'll give a Python snippet to compute the clean sheet rate from a dataset, with relevant columns like keeper, match_id, goals conceded, focusing on the last 10 years of UCL data. I’ll present this in a straightforward format. I also want to offer a one-liner in Chinese for clarity! Let’s get this response ready.

et

这是个有意思的榜单标题。你想要我:

  1. 核验数据并给出来源/完整榜单,
  2. 解释零封率计算口径和样本门槛,
  3. 直接给你一段代码,从你的比赛数据里算出近10年欧冠门将零封率并导出榜单?

快速提示

  • 零封率=零封场次/出场场次(通常只算首发或≥X分钟),时间窗为最近10赛季或最近10个自然年,且仅限欧冠正赛。
  • 要设置最少出场门槛(如≥10或≥15场),否则像拉亚这类欧冠样本较小的门将会因小样本偏高。
  • 队伍防守强弱、淘汰赛对手强度、是否含加时等口径都会影响结果;需要提前约定。

如果你有原始数据,我可以本地算。下面是一段可直接用的 pandas 脚本:给它一份逐场数据 CSV,就能按“近10年欧冠”出门将零封率榜单。

UCL

# file: ucl_clean_sheet_rates.py
import pandas as pd
from datetime import datetime, timedelta

# 配置
INPUT_CSV = "matches.csv"  # 需要的列:keeper, date, competition, is_ucl, goals_conceded, started(可选), minutes(可选)
MIN_STARTS = 10            # 最少首发场次门槛
YEARS = 10

def is_clean_sheet(gc):
    try:
        return int(gc) == 0
    except:
        return False

def main():
    df = pd.read_csv(INPUT_CSV)

    # 统一字段
    if "is_ucl" in df.columns:
        ucl = df["is_ucl"] == True
    else:
        # 如果没有显式标记,则用 competition 文本包含规则(自行按你的数据调整)
        ucl = df["competition"].str.contains("UEFA Champions League", case=False, na=False)

    # 时间窗:最近10年
    df["date"] = pd.to_datetime(df["date"])
    cutoff = pd.Timestamp(datetime.now() - timedelta(days=365*YEARS))
    df = df[ucl & (df["date"] >= cutoff)].copy()

    # 出场口径:默认按 started 或 minutes>0 过滤
    if "started" in df.columns:
        played = df["started"].fillna(False)
        df = df[played]
    elif "minutes" in df.columns:
        df = df[df["minutes"].fillna(0) > 0]

    # 计算零封
    df["clean_sheet"] = df["goals_conceded"].apply(is_clean_sheet)

    grp = df.groupby("keeper").agg(
        matches=("clean_sheet", "size"),
        clean_sheets=("clean_sheet", "sum")
    ).reset_index()

    grp = grp[grp["matches"] >= MIN_STARTS].copy()
    grp["cs_rate"] = grp["clean_sheets"] / grp["matches"]

    grp = grp.sort_values(["cs_rate","matches","clean_sheets"], ascending=[False, False, False])

    # 输出
    grp["cs_rate_pct"] = (grp["cs_rate"] * 100).round(1)
    cols = ["keeper","matches","clean_sheets","cs_rate_pct"]
    grp[cols].to_csv("ucl_clean_sheet_rates_last10y.csv", index=False)
    print(grp.head(20)[cols].to_string(index=False))

if __name__ == "__main__":
    main()

需要的话把你的 matches.csv 的列名/口径告诉我,我帮你对上字段并跑一版;或者我去查公开数据源做一次核验并给出完整前十(需要你确认是否要我联网检索)。

datas

Copyright 2024 麻将胡了(中国)官方网站 - 麻将胡了试玩平台 - PGMAHJONG All Rights by 麻将胡了